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Using the BOUT++ plasma boundary turbulence code, 
we examine the role that hyper-resistivity plays in 

simulations of ELMs and the pedestal collapse.

• BOUT++ simulations achieved ELM pedestal collapse 
consistent with experiment after including several non-ideal 
effects, most notably a hyper-resistivity term

• Hyper-resistivity allows magnetic reconnection to occur on 
a different spatial scale than resistive reconnection

• To better understand the reconnection process, a new field-
line tracing utility is developed for the BOUT++ framework

• Poincaré plots show that as the resistive layer width 
becomes smaller than the hyper-resistive layer width, the 
reconnection becomes independent of Lundquist number 
and core collapse is comparable to experiment
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The physics module that is used solves the reduced 
MHD equations with several non-ideal effects included.

Using hyper-resistivity ηΗ

SH = µ0R3vA/ηH = S/αH

After gyroviscous 
cancellation, the diamagnetic 
drift modifies the vorticity 
and additional nonlinear 
terms

Using force balance and 
assuming no net rotation, 

Er0 = (1/NiZie)∇ ┴Pi0

Using resistive MHD term, 
resistivity can be 
renormalized as Lundquist 
Number

S = µ0RvA/η

Non-ideal physics

Ref: Xu et. al. PRL 105, 175005 (2010)
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Hyper-resistivity can allow reconnection to occur on 
coarser spatial scales resulting in magnetic 

reconnection that is independent of S.

• The resistive current layer is proportional to the square root 
of the plasma resistivity

• The hyper-resistivity has a much stronger scaling with the 
hyper-Lundquist number, allowing reconnection on scales 
independent of S for sufficiently high S

H

• This stronger scaling makes nonlinear simulations at 
realistic S more tractable provided that the layer width is 
larger than the grid spacing

JXH ∆>>∆≥∆
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Including the hyper-resistivity in BOUT++ simulations 
shows pedestal collapse is limited to the edge and the 

energy lost is consistent with experiment.

Ref: Xu et. al. PRL 105, 175005 (2010)
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We use a well-studied circular cross-section toroidal 
equilibrium generated by the TOQ equilibrium code 

(cbm18_dens8).
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Field-aligned coordinates
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BOUT++ utilizes a coordinate system aligned with the 
magnetic field for computational efficiency.

In most simulations, only a fraction of 
the torus is simulated

Computational 
Domain

The y-periodicity requires a twist-shift 
condition due to the field-aligned system

( ) ( )10 ,0,,2, zyxFzyxF === π

( ) max01  MOD zdyzz ∫+= ν
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To analyze the reconnection process, Poincaré plots 
are created by integrating along the field lines using 

the appropriate twist-shift boundary conditions.

0yy =To produce a Poincaré plot on a poloidal plane

1) Integrate from            to π2=y0yy =

3) Integrate from          to 0yy =0=y

x̂−

ŷ

ẑ

π2=y

0yy =

0=y

(1)

(3)

(2a)

(2b)

2) Use twist-shift to jump from             to 0=yπ2=y
 --- Flux Surfaces
 --- Unperturbed Field
 --- Perturbed Field
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The field-line equations depend upon the perturbed 
vector potential everywhere, but BOUT++ solves for 

discrete points.

• In BOUT++, the perturbed parallel vector potential is 
evolved

• The field-line equations in the BOUT++ coordinate system 
become

• The vector potential, its spatial derivatives, and the metric 
coefficients must be determined at all points in the domain



10

Two interpolation methods that preserve the continuity 
of first derivatives across cell boundaries are 

implemented.

• The first method uses a bicubic interpolant in x and y with a 
Fourier representation for the periodic binormal direction z

• The second method uses a tricubic interpolant

– Coefficients chosen so that

matches at the corners
Ref: Lekien & Marsden, Int. J. Numer. Meth. Engng 2005; 63:455–471
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Using a model function, both methods correctly 
capture the primary q=m/5 island structures.
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The islands grow and secondary islands form as the 
perturbation increases.
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Stochastic regions develop when the secondary islands 
begin to overlap.
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For a single high toroidal mode (k
z
=60), bicubic+FFT 

interpolation appears better at resolving the topology.

14



15

Data from BOUT++ simulations in the early non-linear 
phase exhibit unphysical attractors for the bicubic+FFT 

interpolation but not the tricubic interpolation.
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For S=108, S
H
=1012, the reconnection region is small 

and the collapse is limited.
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Changing S (S=107, S
H
=1012) has little effect if hyper-

resistive reconnection is dominant.
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When 
 
S=106,S

H
=1012 resistive reconnection begins to 

dominate (Δ
J
>Δ

H
) and the pedestal crash is larger.
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The pedestal collapse is governed by the larger 
reconnection layer width.

• The size of the ELM can be estimated as

S=105

Δ
J
~34.0 mm

S=106

Δ
J
~10.7 mm

S=107

Δ
J
~3.40 mm

S=108

Δ
J
~1.07 mm

S
H
=1011

Δ
H
~10.7 mm

Δ
ELM

=23.5%

<t>=42-92 τ
A

Δ
ELM

=12.1%

<t>=45-95 τ
A

Δ
ELM

=8.06%

<t>=47-97 τ
A

Δ
ELM

=10.8%

<t>=50-100 τ
A

S
H
=1012

Δ
H
~6.05 mm

Δ
ELM

=20.8%

<t>=45-70 τ
A

Δ
ELM

=7.29%

<t>=45-95 τ
A

Δ
ELM

=3.48%

<t>=50-100 τ
A

Δ
ELM

=3.43%

<t>=50-100 τ
A

The time average is over the ELM crash 
period, typically ~50-100 τ

A
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Topology changes in an ideal MHD case run with 
BOUT++ suggest that numerical dissipation in the 

code may be an issue.
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Conclusions

• A line-tracing utility was implemented for post-processing 
BOUT++ simulation results to produce Poincaré plots and 
analyze the magnetic topology

– Bicubic+FFT interpolation does better for high modes

– Tricubic does not suffer from attractors in field-line plots

• When the hyper-resistive layer width is larger than the 
resistive layer width, hyper-resistive reconnection 
dominates the dynamics and the resulting pedestal collapse 
is independent of S

– Sufficiently high S
H
 (>1011) with realistic S (~107-108) 

leads to ELM sizes that match experimental ones 
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